Atmospheric and Radiometric Correction Algorithms for the Multitemporal Assessment of Grasslands Productivity
نویسندگان
چکیده
A key step in the processing of satellite imagery is the radiometric correction of images to account for reflectance that water vapor, atmospheric dust, and other atmospheric elements add to the images, causing imprecisions in variables of interest estimated at the earth’s surface level. That issue is important when performing spatiotemporal analyses to determine ecosystems’ productivity. In this study, three correction methods were applied to satellite images for the period 2010–2014. These methods were Atmospheric Correction for Flat Terrain 2 (ATCOR2), Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), and Dark Object Substract 1 (DOS1). The images included 12 sub-scenes from the Landsat Thematic Mapper (TM) and the Operational Land Imager (OLI) sensors. The images corresponded to three Permanent Monitoring Sites (PMS) of grasslands, ‘Teseachi’, ‘Eden’, and ‘El Sitio’, located in the state of Chihuahua, Mexico. After the corrections were applied to the images, they were evaluated in terms of their precision for biomass estimation. For that, biomass production was measured during the study period at the three PMS to calibrate production models developed with simple and multiple linear regression (SLR and MLR) techniques. When the estimations were made with MLR, DOS1 obtained an R2 of 0.97 (p < 0.05) for 2012 and values greater than 0.70 (p < 0.05) during 2013–2014. The rest of the algorithms did not show significant results and DOS1, which is the simplest algorithm, resulted in the best biomass estimator. Thus, in the multitemporal analysis of grassland based on spectral information, it is not necessary to apply complex correction procedures. The maps of biomass production, elaborated from images corrected with DOS1, can be used as a reference point for the assessment of the grassland condition, as well as to determine the grazing capacity and thus the potential animal production in such ecosystems.
منابع مشابه
NDVI and SAVI Indices Analysis in Land Use Extraction and river route
Extended abstract 1- Introduction Land use reflects the interactive characteristics of humans and the environment and describes how human exploitation works for one or more targets on the ground. Land use is usually defined based on human use of the land, with an emphasis on the functional role of land in economic activities. Land use, which is associated with human activity, is changing over...
متن کاملRadiometric Correction of Multitemporal Satellite Imagery
Problem statement: Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. Also major problem with satellite images is that regions...
متن کاملError estimates for a histogram in scatterometer geophysical model function estimation
Radiometric correction of visible and in-frared remote sensing data at the Canada Centre for remote sensing, " Int. Use of satellite images for fog detection (AVHRR) and forecast of fog dissipation (METEOSAT) over lowland Thessalia, Hellas, " Int. An alternative simple approach to estimate atmospheric correction in multitemporal studies, " Int. An improved dark-object subtraction technique for ...
متن کاملEstimating Plant Dry Matter Productivity for AL-Sweeda Badia Rangeland (Syria) at Deferent Processing Levels of BKA, KVA Satellite Images
Estimation of plant dry matter to management of rangelands fast as well as high accuracy is important for managers. Research aims to compare Plant Dry Matter Productivity (PDMP) values estimated by Normalized Difference Vegetation Index (NDVI) derived from satellite images BKA, KVA according to different levels of satellite image processing, for AL-Sweeda Badia (Syria), during the April, July o...
متن کاملAssessment of radiometric correction methods for ADS40 imagery
This article presents the results of an assessment of radiometric correction methods of images taken by the large-format aerial, photogrammetric, multispectral pushbroom camera Leica Geosystems ADS40. The investigation was carried out in the context of the multi-site EuroSDR project “Radiometric aspects of digital photogrammetric images”. Images were collected at the forestry research test site...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 10 شماره
صفحات -
تاریخ انتشار 2018